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Functional magnetic resonance 
imaging (fMRI) 

1. Associating brain and 
behavior


2. Studying group 
differences

How does the human 
brain function?

• Functional magnetic resonance imaging (fMRI) revolutionized the 
field of neuroscience. 

• We have access to a vastly large amount of insightful data from 
our brains. 

• Researchers use these data to understand how the human brain 
works, to associate the brain with our behaviors, to investigate 
individual differences, or to study brain alterations in 
neuropsychiatric disorders.



Widely used in neuroscience to understand 
the functional organization of the brain.

1. What are connectomes

2. How to make functional 

connectivity

3. Applications in 

neuroscience

Functional 
Connectivity

Motion correction Registering to a templateSkull stripping

edge 1

Voxel wise parcellation ROI-based parcellation Functional connectomes
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• The need for an atlas to create a connectome hinders comparisons across 
studies.

• Different atlases divide the brain into different regions of varying size and 
topology.

• Thus connectomes created from different atlases are not directly 
comparable. 



Different studies have different 
standards and limitations 

1. Generalizability 

2. Storage concerns

3. Privacy concerns

Real-world 
challenges

edge 1 edge 1 edge 1

HCP UK Biobank ABCD

• Storage and time complexity: 
• Smaller labs might not have the resources to store and 

reprocess these data from scratch.

• Privacy concerns:
• Due to privacy some datasets are only released as 

fully processed connectomes. 
• Critically, in this case, it is not possible to go to the data 

to create connectomes from another atlas. 

• Generalizability:
• Currently, no solutions exist to extend previous results 

to a connectome generated from a different atlas.
• This prevents these datasets from being combined 

without reprocessing data. 



Estimating connectomes in a missing 
form 

1. Time series-based 
approach


2. Transforming distribution 
of ROIs across atlases

Our solution: dataset 
harmonization
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Measures exactly the same thing

1. Log properties, product to 
addition, division to 
subtraction


2. How likely  would 
generate samples from 

q(x)

p(x)
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Estimating connectomes in a missing 
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approach


2. Transforming distribution 
of ROIs across atlases

Our solution: dataset 
harmonization
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KL divergence fails in this scenario. 




Estimating connectomes in a missing 
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1. Time series-based 
approach
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of ROIs across atlases

Our solution: dataset 
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1. How about when the two distributions are 
defined in completely different spaces?


2. Optimal Transport captures both geometry and 
inconsistency of dimensions between  and .p q

ℳ1 ≠ ℳ2



Optimal Transport
T : {x1, . . , xn} → {y1, . . , yn}

bj = ∑
i:T(xi)=yj

ai

A mapping between locations x and y

must verify 

The only criterion here is to make sure we transfer all 
mass into some location  yj

Monge [1781]



min
T {∑

i

C(xi, T(xi)) : T♯α = β},

This map should minimize some 
transportation cost, which is parameterized 

by a cost function C

Optimal Transport

Monge [1781]



Kantorovich Relaxation [1942] 

Admissible Couplings

Optimal Transport

Monge [1781]

Kantorovich 

[1942]



P ∈ U(a, b) ⇔ PT ∈ U(b, a)
Kantorovich Relaxation is symmetric

Kantorovich’s optimal transport problem now reads

Optimal Transport

Monge [1781]

Kantorovich 

[1942]

Lc(μt, νt) = min
T

CTT  s.t, AT = [μt
νt] .



Kantorovich 

[1942]

C

Entropy regularization: An approximation solution

Optimal Transport

Monge [1781]

Kantorovich 

[1942]

Hitchcock

[1941]



A data-driven method to measure the distance 
and find a policy to transform connectomes 

1. Translating each time 
frame to a vector


2. Cost matrix

3. Loss function


Cross Atlas 
Remapping via Optimal 
Transport (CAROT) 

Lc(μt, νt) = min
T

CTT − ϵH(T) s.t, AT = [μt
νt] .

C =
C1,1 . . C1,m
. . . .

Cn,1 . . Cn,m

∈ ℝn×m

node i

node j

edge 1 edge 1

node i

node j

Ci,j = Functional distance



Test data point available in the source 
atlas

1. Applying the trained 
policies 


2. Some of large scale 
projects release data in 
multiple atlases


3. A need for an advanced 
version

T

Cross Atlas Remapping via 
Optimal Transport (CAROT) 

node i

node j

edge 1 edge 1

node i

node j

test data point ν = μT

What if multiple parcellations for each 
individual are available?




An advanced version when multiple 
parcellations are available

Stacking multiple 
optimal transport 

1. Incorporating multiple 
time series


2. Bigger cost matrix

3. Bigger policy 



 Me

Human connectome projects

1. Train-test split

2. 25% for policy training

3. 75% for testing

4. 10 fold CV

Experiments: 

HCP Project
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The Human Connectome project is used for training mappings, 
intrinsic analysis, and for some downstream analysis

1

2

 transportation policies(6
2) = 15



How does a policy look like

1. Topological differences 
are clear


2. Schaefer doesn’t include 
some areas

Policies

• Red spots represent higher transportation and blow 
spots belong to zero transportation.


• You can see that some spots are more intense than 
others indicating higher transformation between regions.


• This emphasizes some of the structural differences 
between atlases:  

• The horizontal line between Schaefer and Shen is 

belonging to areas that are missing in Schaefer



• There are differences among various runs and targets:

• Similar atlases reproduced more similar connectomes


• We can predict behavior (e.g., fluid intelligence) and can identify 
individuals across different runs.


• The correlation as a function of a number of sources.

HCP dataset, resting scan 
connectomes

1. Intrinsic evaluation; 
correlation with original 
counterparts


2. Downstream analysis, 
results on predicting IQ

Experimental results



GitHub and live demo

1. Live demo for some 
atlases


2. GitHub repository for all 
types of data

Software

carotproject.com

https://github.com/dadashkarimi/carot

http://carotproject.com
https://github.com/dadashkarimi/carot


CAROT encourages open science in 
connectomics

1. CAROT helps overcome 
multiple atlas problem


2. CAROT brings good 
quality

Summary
• In sum, CAROT allows a connectome generated 

from one atlas to map to a different atlas without 
needing raw data.

• These reconstructed connectomes are similar to the 
original connectomes created from the raw data. 

• Using CAROT accelerates the use of big data, and 
makes replication efforts easier.
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An advanced version when multiple 
parcellations are available

Stacking multiple 
optimal transport 

1. Incorporating multiple 
time series


2. Bigger cost matrix

3. Bigger policy 

Lc(μ *t ,ν*t) = min
T

CTT − ϵH(T) s.t, AT = [μ *t

ν *t ] .

μ*s =

μ1
μ2
⋮
μk

∈ ℝns, νt ∈ ℝnt, C* =
C1,1 . . C1,m
. . . . . .

Cns,1 . . Cn,m

∈ ℝns×m


