Stacking multiple optimal transport policies to map functional connectomes

Javid Dadashkarimi

javid.dadashkarimi@yale.edu Contact information:

Matthew Rosenblatt, Amin Karbasi, Dustin Scheinost

Computer Science Department Yale University

57th Annual Conference on Information Sciences and Systems Baltimore, MD

March, 2023

Functional magnetic resonance imaging (fMRI)

- 1. Associating brain and behavior
- 2. Studying group differences

How does the human brain function?

- Functional magnetic resonance imaging (fMRI) revolutionized the field of neuroscience.
- We have access to a vastly large amount of insightful data from our brains.
- Researchers use these data to understand how the human brain works, to associate the brain with our behaviors, to investigate individual differences, or to study brain alterations in neuropsychiatric disorders.

Widely used in neuroscience to understand the functional organization of the brain.

- 1. What are connectomes
- 2. How to make functional connectivity
- 3. Applications in neuroscience

Functional Connectivity

Widely used in neuroscience to understand the functional organization of the brain.

- 1. What are connectomes
- 2. How to make functional connectivity
- 3. Applications in neuroscience

Functional Connectivity

Explanatory Analysis Predictive Modeling

$Y = X_1\beta_1 + X_2\beta_2 + ... + X_N\beta_N + \beta_0$

- The need for an atlas to create a connectome hinders comparisons across studies.
- Different atlases divide the brain into different regions of varying size and topology.
- Thus connectomes created from different atlases are not directly comparable.

Different studies have different standards and limitations

- 1. Generalizability
- 2. Storage concerns
- 3. Privacy concerns

Real-world challenges

• **Storage and time complexity**:

• Smaller labs might not have the resources to store and reprocess these data from scratch.

• **Privacy concerns**:

- Due to privacy some datasets are only released as fully processed connectomes.
- Critically, in this case, it is not possible to go to the data to create connectomes from another atlas.

• **Generalizability**:

- Currently, no solutions exist to extend previous results to a connectome generated from a different atlas.
- This prevents these datasets from being combined without reprocessing data.

- 1. Time series-based approach
- 2. Transforming distribution of ROIs across atlases

Our solution: dataset harmonization

A moment-to-moment transportation method

- 1. Time series-based approach
- 2. Transforming distribution of ROIs across atlases

Our solution: dataset harmonization

$$
\frac{P(\text{observation} | p)}{P(\text{observation} | q)} = \frac{p_1^{N_A^1} (1 - p_1)^{N_I^1} p_2^{N_A^1} (1 - p_2)^{N_I^1} \cdots p_{16}^{N_A^1} (1 - p_{16})^{N_I^1}}{q_1^{N_A^1} (1 - q_1)^{N_I^1} q_2^{N_A^1} (1 - q_2)^{N_I^1} \cdots q_{16}^{N_A^1} (1 - q_{16})^{N_I^1}}
$$

Measures exactly the same thing

Kullback–Leibler divergence

- 1. Log properties, product to addition, division to subtraction
- 2. How likely $q(x)$ would generate samples from *p*(*x*)

normalized relative likelihood =
$$
\left(\frac{p_1^{N_A^1} p_2^{N_A^2} \dots (1 - p_{16})^{N_I}}{q_1^{N_A} q_2^{N_A^2} \dots (1 - q_{16})^{N_I}}\right)^{\frac{1}{N}}
$$

\n= $\frac{1}{N} \log \left(\frac{p_1^{N_A} p_2^{N_A} \dots (1 - p_{16})^{N_I}}{q_1^{N_A} q_2^{N_A} \dots (1 - q_{16})^{N_I}}\right)$
\n= $\frac{1}{N} \log p_1^{N_A^1} + \frac{1}{N} \log (1 - p_1)^{N_I^1} \dots - \frac{1}{N} \log q_{16}^{N_A} - \frac{1}{N} \log (1 - q_{16})^{N_I}$
\n= $\frac{N_A^1}{N} \log p_1 + \frac{N_I^1}{N} \log (1 - p_1) \dots - \frac{N_A}{N} \log q_{16} - \frac{N_I}{N} \log (1 - q_{16})$

 $= p_1 \log p_1 + (1 - p_1) \log (1 - p_1) \cdot \cdot \cdot - q_{16} \log q_{16}$

 $-(1 - q_{16})\log(1 - q_{16})$

$$
=D_{KL}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)} \right)
$$

- 1. Time series-based approach
- 2. Transforming distribution of ROIs across atlases

Our solution: dataset harmonization

$KL(p||q) < KL(p||q')$

- 1. Time series-based approach
- 2. Transforming distribution of ROIs across atlases

How about when $m \neq n$

Our solution: dataset harmonization

$$
N_I \bullet \bullet \bullet \quad q_{17}^{N_A} (1 - q_{17})^{N_I}
$$

$$
N_I \cdot P_{16}^{N_A} (1 - p_{16})^{N_I} \times 0
$$

KL divergence fails in this scenario.

- 1. Time series-based approach
- 2. Transforming distribution of ROIs across atlases

Our solution: dataset harmonization

- 1. How about when the two distributions are defined in completely different spaces?
- 2. Optimal Transport captures both geometry and inconsistency of dimensions between *p* and *q*.

Optimal Transport

$$
T: \{x_1, \ldots, x_n\} \rightarrow \{y_1, \ldots, y_n\}
$$

$$
b_j = \sum_{i: T(x_i) = y_j} a_i
$$

A mapping between locations x and y

must verify

The only criterion here is to make sure we transfer all mass into some location *yj*

$$
\min_{T} \left\{ \sum_{i} C(x_i, T(x_i)) : T_{\sharp} \alpha = \beta \right\},\
$$

This map should minimize some transportation cost, which is parameterized by a cost function C

Optimal Transport

Kantorovich Relaxation [1942]

$$
\mathbf{U}(\mathbf{a}, \mathbf{b}) \stackrel{\text{def.}}{=} \left\{ \mathbf{P} \in \mathbb{R}_+^{n \times m} \; : \; \mathbf{P} \mathbb{1}_m = \mathbf{a} \quad \text{and} \quad \mathbf{P}^{\mathrm{T}} \mathbb{1}_n \; : \; \mathbf{P} \mathbb{1}_m = \left(\sum_j \mathbf{P}_{i,j} \right)_i \in \mathbb{R}^{n} \; \text{and} \; \mathbf{P}^{\mathrm{T}} \mathbb{1}_n = \left(\sum_i \mathbf{P}_{i,j} \right)_j \in \mathbb{R}^{n}
$$

Admissible Couplings

Optimal Transport

 $P \in U(a, b) \Leftrightarrow P^T \in U(b, a)$ Kantorovich Relaxation is symmetric

Kantorovich's optimal transport problem now reads

$$
\mathrm{L}_{\mathbf{C}}(\mathbf{a},\mathbf{b})\stackrel{\text{\tiny def.}}{=}\min_{\mathbf{P}\in \mathbf{U}(\mathbf{a},\mathbf{b})}\left\langle \mathbf{C},\,\mathbf{P}\right\rangle \stackrel{\text{\tiny def.}}{=}\sum_{i,j}\mathbf{C}_{i,j}\mathbf{P}_{i}
$$

Optimal Transport

Monge [1781]

Kantorovich

[1942]

$$
A = \begin{bmatrix} 1 & 2 & n \\ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} & \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} & \cdots & \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vd
$$

Entropy regularization: An approximation solution

$\mathcal{L}_{\mathbf{C}}^{\varepsilon}(\mathbf{a},\mathbf{b})\stackrel{\scriptscriptstyle\rm def.}{=}\min_{\mathbf{P}\in\mathbf{U}(\mathbf{a},\mathbf{b})}\left\langle \mathbf{P},\,\mathbf{C}\right\rangle -\varepsilon\mathbf{H}(\mathbf{P}).$

Kantorovich [1942] **Hitchcock** [1941]

Optimal Transport

A data-driven method to measure the distance and find a policy to transform connectomes

- 1. Translating each time frame to a vector
- 2. Cost matrix
- 3. Loss function

μt ν_t .

Cross Atlas Remapping via Optimal Transport (CAROT)

$$
C = \begin{pmatrix} C_{1,1} & \dots & C_{1,m} \\ \dots & & \dots \\ C_{n,1} & \dots & C_{n,m} \end{pmatrix} \in \mathbb{R}^{n \times m}
$$

Ci,*^j* = Functional distance

Test data point available in the source atlas

- 1. Applying the trained policies *T*
- 2. Some of large scale projects release data in multiple atlases
- 3. A need for an advanced version

Cross Atlas Remapping via Optimal Transport (CAROT)

test data point $\nu = \mu T$

What if multiple parcellations for each individual are available?

An advanced version when multiple parcellations are available

Stacking multiple optimal transport

- 1. Incorporating multiple time series
- 2. Bigger cost matrix
- 3. Bigger policy

Human connectome projects

- 1. Train-test split
- 2. 25% for policy training
- 3. 75% for testing
- 4. 10 fold CV

Experiments:

 $\binom{1}{2}$ = 15 transportation policies 6 $_{2}) = 15$

The Human Connectome project is used for training mappings, intrinsic analysis, and for some downstream analysis

How does a policy look like Policies

- 1. Topological differences are clear
- 2. Schaefer doesn't include some areas

- Red spots represent higher transportation and blow spots belong to zero transportation.
- You can see that some spots are more intense than others indicating higher transformation between regions.
- This emphasizes some of the structural differences between atlases:
	- The horizontal line between Schaefer and Shen is belonging to areas that are missing in Schaefer

- There are differences among various runs and targets:
	- Similar atlases reproduced more similar connectomes
- We can predict behavior (e.g., fluid intelligence) and can identify individuals across different runs.
- The correlation as a function of a number of sources.

- Intrinsic evaluation; correlation with original **counterparts**
- 2. Downstream analysis, results on predicting IQ

HCP dataset, resting scan connectomes

Experimental results

GitHub and live demo Software

- 1. Live demo for some atlases
- 2. GitHub repository for all types of data

carotproject.com

Cross-Atlas Remapping via Optimal Transport

 $\arg\min_{T} C^{T}T - \epsilon H(T) \text{ s.t, } AT = \begin{bmatrix} \mu_t \\ \nu_t \end{bmatrix}.$

 $\mathcal{O}(n^2 \log(n) \eta^{-3})$

Upload Files

Reconstruct in Target Atlas

<https://github.com/dadashkarimi/carot>

Target Atlas

 \checkmark

Shen 268

About

No description, website, or topics provided.

- \square Readme
- ☆ 9 stars
- \odot 8 watching
- 앟 2 forks

Releases

No releases published Create a new release

Packages

No packages published

CAROT encourages open science in connectomics

- 1. CAROT helps overcome multiple atlas problem
- 2. CAROT brings good quality

Summary

- In sum, CAROT allows a connectome generated from one atlas to map to a different atlas without needing raw data.
- These reconstructed connectomes are similar to the original connectomes created from the raw data.
- Using CAROT accelerates the use of big data, and makes replication efforts easier.

- Dustin Scheinost
- Amin Karbasi
- Qinghao Liang
- Matthew Rosenblatt
- Stephanie Noble
- Raimundo Rodriguez
- Brendan Adkinson
- Huili Sun
- Jean Ye
- Maya Foster
- Chris Camp
- Michael Farruggia
- Link Tejavibulya
- Wei Dai
- Raina Vin
- AJ Simon
- Camille Duan
- Rongtao Jiang
- Angeliki Pollatou
- Shuo Chen
- Marie Mccusker

Thank you so much: MINDS lab and IID lab

An advanced version when multiple parcellations are available

Stacking multiple optimal transport

- 1. Incorporating multiple time series
- 2. Bigger cost matrix
- 3. Bigger policy

$$
L_c(\mu^*, \nu^*)_t = \min_T C^T - \epsilon H(T) \text{ s.t. } A\underline{T} = \begin{bmatrix} \mu^* \\ \nu^* \\ \nu^* \end{bmatrix}.
$$

$$
\mu^*_s = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix} \in \mathbb{R}^{n_s}, \nu_t \in \mathbb{R}^{n_t}, C^* = \begin{pmatrix} C_{1,1} & \cdots & C_{1,m} \\ \cdots & \cdots & \cdots \\ C_{n,s,1} & \cdots & C_{n,m} \end{pmatrix} \in \mathbb{R}^{n_s \times m}
$$

Target Connectoms