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Widely used in neuroscience to understand 
the functional organization of the brain.

1. What are a connectomes

2. How to make functional 

connectivity

3. Applications in 

neuroscience

Functional 
Connectivity• Definition: A connectome—a matrix describing the 

connectivity between any pair of brain regions
• Is a popular approach in neuroscience to study the 

brain's functional organization.
• How to make: They are created by parcellating the 

brain into distinct areas using an atlas and estimating 
the connections between these regions.

• Applications: To study individual differences in brain 
function, associating brain and behavior, and 
understanding brain alterations in neuropsychiatric 
disorders.
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• Steps motion correction, skull 
stripping, registering to common 
space, and registering to the 
anatomical image are common 
steps before parcellations.



• The need for an atlas to create a 
connectome hinders generalization 
efforts.

1. The need for an atlas to 
create connectomics


2. Multiple atlases are 
available

Limitations

• The need for an atlas to create a connectome hinders 
comparisons across studies and replication and 
generalization efforts.

• Different atlases divide the brain into different regions 
of varying size and topology.

• Thus connectomes created from different atlases are 
not directly comparable. 
• Further, several atlases exist with no gold standards, and more are being 

developed yearly.
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Examples from predictive modeling 
and explanatory analysis

1. Predictive modeling

2. Explanatory analysis

Theoretical 
Concerns

X, β ∈ ℝ2 X ∈ ℝ3

A B

• Example 1: In predictive modeling, the feature 
space between train and test should match:
• It’s impractical to train a model on A and test on B: 

.
• Other techniques include meta-learning, transfer 

learning, and federated learning.

Y = XTβ + ϵ



Different studies have different 
standards and limitations 

1. Generalizability 

2. Storage concerns

3. Privacy concerns

Real-world 
challenges

edge 1 edge 1 edge 1

HCP UK Biobank ABCD

• Storage concerns: 
• Smaller labs might not have the resources to store and 

reprocess these data from scratch.
• Privacy concerns:

• Due to privacy concerns of being able to identify a 
participant based on unprocessed data, some datasets 
are only released as fully processed connectomes. 

• Critically, in this case, it is not possible to go to the data 
to create connectomes from another atlas. 

• Generalizability:
• Currently, no solutions exist to extend previous results 

to a connectome generated from a different atlas.
• This prevents these datasets from being combined 

without reprocessing data. 



Estimating connectomes in a missing 
form 

1. Time series-based 
approach


2. Transforming distribution 
of ROIs across atlases

Our solution: dataset 
harmonization

edge 1 edge 1 edge 1

HCP UK Biobank ABCD
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Classical methods to 
compare distributions

1. KL divergence

2. JS divergence

3. Having the same number 

of supports is equired

An overview on 
information theory
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Measures exactly the same thing

1. Log properties, product to 
addition, division to 
subtraction


2. How likely  would 
generate samples from 

q(x)

p(x)
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A symmetric version of KL-divergence

1. Symmetric

2. Other divergence 

methods

Jensen–Shannon 
divergence

Jensen-Shannon divergence =
1
2

DKL(p | |
p + q

2 ) +
1
2
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p + q

2 )

squared Hellinger distance = 2∑
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What if  and  have different

number of classes?
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Background
Optimal transport

T : {x1, . . , xn} → {y1, . . , yn}

bj = ∑
i:T(xi)=yj

ai

A mapping between locations x and y

must verify 

The only criterion here is to make sure we transfer all 
mass into some location  yj

Monge [1781]



min
T {∑

i

C(xi, T(xi)) : T♯α = β},

This map should minimize some 
transportation cost, which is parameterized 

by a cost function C

Background
Optimal transport

Monge [1781]



Push-forward of measures Pull-back of functions

Kantorovich Relaxation [1942] 

Admissible Couplings

Background
Optimal transport

Monge [1781]

Kantorovich 

[1942]



P ∈ U(a, b) ⇔ PT ∈ U(b, a)
Kantorovich Relaxation is symmetric

Kantorovich’s optimal transport problem now reads

Background
Optimal transport

Monge [1781]

Kantorovich 

[1942]

Lc(μt, νt) = min
T

CTT  s.t, AT = [μt
νt] .



Kantorovich 

[1942]

C

Entropy regularization: An approximation solution

Background
Optimal transport

Monge [1781]

Kantorovich 

[1942]

Hitchcock

[1941]

C1
a = {P, P1 = a} C2

b = {P, P1 = b}

P(l+1) = ProjKL
C1

a
P(l) P(l+2) = ProjKL

C2
b

P(l + 1)

Iterative solutions: Sinkhorn algorithm



A data-driven method to measure the distance 
and find a policy to transform connectomes 

1. Translating each time 
frame to a vector


2. Cost matrix

3. Loss function


Cross Atlas 
Remapping via Optimal 
Transport (CAROT) 

Lc(μt, νt) = min
T

CTT − ϵH(T) s.t, AT = [μt
νt] .

C =
C1,1 . . C1,m
. . . .

Cn,1 . . Cn,m

∈ ℝn×m

node i

node j

edge 1 edge 1

node i

node j

Ci,j = Euclidean distance



Test data point available in the source 
atlas

1. Applying the trained 
policies 


2. Some of large scale 
projects release data in 
multiple atlases


3. A need for an advance 
version

T

Cross Atlas Remapping via 
Optimal Transport (CAROT) 

node i

node j

edge 1 edge 1

node i

node j

test data point ν = μT

What if multiple parcellations for each 
individual are available?




An advanced version when multiple 
parcellations are available

Cross Atlas Remapping via 
Optimal Transport (CAROT)2

ATLAS 1

Time Series 

Source 1

time point j

Time Series 

ATLAS 2

Source 2

time point j

Time Series 

ATLAS N

Source N

time point j

Target

edge 1

4

Target Connectoms

time point j

Optimal Transport

Sinkhorn Algorithm

1

2

Lc(μ *t ,ν*t) = min
T

CTT − ϵH(T) s.t, AT = [μ *t

ν *t ] .

μ*s =

μ1
μ2
⋮
μk

∈ ℝns, νt ∈ ℝnt, C* =
C1,1 . . C1,m
. . . . . .

Cns,1 . . Cn,m

∈ ℝns×m

1. Incorporating multiple 
time series


2. Bigger cost matrix

3. Bigger policy 



Human connectome projects

1. Train-test split

2. 25% for policy training

3. 75% for testing

4. 10 fold CV

Experiments: 

HCP Project

Shen Atlas Craddock Dosenbach Schaefer Brainnetom Power
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The Human Connectome project is used for training mappings, 
intrinsic analysis, and for some downstream analysis

1

2

 transportation policies(6
2) + 6 = 21



Yale participant

1. Testing generalization of 
policies


2. 50 male and 50 female 
Yale participant dataset

Experiments: 

25% 25% 25% 25% 25% 25%
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100%

Original

100%

Original

100%

Original

100%

Original

100%

Original

100%

Original

100%

Reconstructed

100%

Reconstructed

100%

Reconstructed

100%

Reconstructed

100%

Reconstructed

100%

Reconstructed

Cross-dataset analysis: We used resting-state data 
collected from 100 participants at the Yale School of 

Medicine. 

HCP

Yale 
Participants

1

2

This dataset included 50 females (age=33) and 50 males (age=34.9) 
with eight functional scans (48 minutes total).



Rest-meta MDD dataset

1. Testing generalization of 
models


2. A dataset that is not 
released on Shen 268


3. A model that performs the 
best on Shen 268

Experiments: 

CraddockDosenbach Power

100%

Original

100%

Original

100%

Original

Shen Atlas

100%

Reconstructed

Rest 
meta 
MDD

2

Source 2 Source 1

time point j time point j

Source 3

time point j

25% Dosenbach

25% Power

25% Craddock

1

2



How does a policy look like

1. Topological differences 
are clear


2. Schaefer doesn’t include 
some areas

Policies

• You can see that some spots are more intense than 
others indicating higher transformation between regions.


• This emphasizes some of the structural differences 
between atlases:  

• The horizontal line between Schaefer and Shen is 

belonging to areas that are missing in Schaefer



Functional distance vs Euclidean 
distance

1. Euclidean distance

2. Functional distance

What should we choose 
as a cost matrix?

C* =
C1,1 . . C1,m
. . . . . .

Cns,1 . . Cn,m

∈ ℝns×m C = 1 −
ρ(U1,., N1,.) . . ρ(U1,., Nn,.)

. . . . . .
ρ(Um,., N1,.) . . ρ(Um,., Nn,.)

∈ ℝm×n

Ci,j = Euclidean distance ρUi,Nj
= Spearman correlation



• The correlation as a function of  is linearly increasing.

• There are differences among various runs and targets:

• Similar atlases reproduced more similar connectomes


• We can predict behavior (e.g., fluid intelligence) and can 
identify individuals across different runs.

k

Original

Recon

Reconstructed connectomes give similar aging results as the original 
connectomes. (Top) the nodes with the largest number of edges are 
significantly associated with age for original connectomes from the 

HCP using Shen. (bottom) reconstructed Shen connectomes (r=0.61)

HCP dataset, resting scan 
connectomes

1. Intrinsic evaluation; 
correlation with original 
counterparts


2. Downstream analysis, 
results on predicting IQ


3. Fingerprinting, two 
resting sessions 

Experimental results



Testing a model on Rest-meta MDD

1. Generalization on Yale 
participant


2. Sex classification on 
Rest-meta MDD

Real-world example

• We investigated if CAROT mappings trained in one dataset 
generalize to other datasets.

• We applied the mappings trained on HCP and reconstructed 
connectomes using the Yale dataset using these mappings. 

• Spearman’s rank correlation between the upper triangles of the 
connectomes was used to assess the similarity between the 
reconstructed and original connectomes.
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Testing a model on Rest-meta MDD

1. Generalization on Yale 
participant


2. Sex classification on 
Rest-meta MDD

Real-world example
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Sex classification on

Rest-meta MDD

• In this evaluation, we generalize a sex classification model on Yale 
dataset: 
• The REST-Meta-MDD dataset (Yan et al., 2016) only provides 

preprocessed timeseries data from the Dosenbach, Power, and 
Craddock atlases.

• Overall, the sex classification model demonstrated significant 
classification accuracy  (Accuracy=60.5% ; Naive model 
accuracy=50%;).

• Next, the sex classification model performed significantly better than 
chance in the REST-Meta-MDD dataset when using the 
reconstructed connectomes.



GitHub and live demo

1. Live demo for some 
atlases


2. GitHub repository for all 
types of data

Software

carotproject.com

https://github.com/dadashkarimi/carot

http://carotproject.com
https://github.com/dadashkarimi/carot


CAROT encourages open science in 
connectomics

1. CAROT helps overcome 
multiple atlas problem


2. CAROT brings good 
quality


3. Policies are generalizable 
over datasets 

Summary• In sum, CAROT allows a connectome generated 
based on one atlas to be directly transformed into a 
connectome based on another without needing raw 
data. 

• These reconstructed connectomes are similar to 
and, in downstream analyses, behave like the 
original connectomes created from the raw data. 

• Using CAROT on preprocessed open-source data 
will increase its utility, accelerate the use of big data, 
and help make a generalization and replication 
efforts easier.
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