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Functional 
Connectome

• A connectome—a matrix describing the connectivity 
between any pair of brain regions—is a popular 
approach in neuroscience to study the functional 
organization of the brain.

• They are created by parcellating the brain into distinct 
areas using an atlas and estimating the connections 
between these regions.

• Applications: To study individual differences in brain 
function, associating brain and behavior, and 
understanding brain alterations in neuropsychiatric 
disorders.
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edge 1 Mass multivariate analysis of disease group differences 
in brain network structure across all tasks. (A) Surface 

illustration of nodes where edges (network
connections) significantly differ across all clinical 

groups, as measured with Hotelling’s T2. (B) illustrates 
significant network-to-network edges.



Limitations in 
Open Science

• The need for an atlas to create a connectome 
hinders comparisons across studies and 
replication and generalization efforts.

• Different atlases divide the brain into different 
regions of varying size and topology.

• Thus connectomes created from different atlases 
are not directly comparable. 

• Further, several atlases exist with no gold 
standards, and more are being developed yearly.
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• Even in predictive modeling, feature space across all data points 
should be consistent. 
• It’s impractical to train a model on A and test on B: .

• Other techniques include meta-learning, transfer learning, and 
federated learning.

Y = XTβ + ϵ

X, β ∈ ℝ2 X ∈ ℝ3

A B



• Currently, no solutions exist to 
extend previous results to a 
connectome generated from a 
different atlas.

• Transforming an existing 
connectome into one generated 
from a different atlas would help.

• However, the released 
connectomes for each project are 
based on different atlases:
• This prevents these datasets 

from being combined without 
reprocessing data. 

• Smaller labs might not have the 
resources to store and reprocess 
these data from scratch.

• Finally, due to privacy concerns of 
being able to identify a participant 
based on unprocessed data, 
some datasets are only released 
as fully processed connectomes. 
• Critically, in this case, it is not 

possible to go to the data to 
create connectomes from 
another atlas. 

edge 1 edge 1 edge 1

HCP UK Biobank ABCD

Small Studies

Large Scale Projects



Classical methods 
have limitations

• Thus, algorithms to map and transform connectomes have 
applications to improve the generalizability of scientific findings.

• Classical algorithm either depends on having an equal number 
of supports or don’t capture the geometry of space (e.g., KL 
divergence)

DKL(μ | |ν) = ∑
x∈𝒳

μ(x)log( μ(x)
ν(x) )
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Background
Optimal transport T : {x1, . . , xn} → {y1, . . , yn}

bj = ∑
i:T(xi)=yj

ai

A mapping between locations x and y

must verify 

The only criterion here is to make sure we transfer all 
mass into some location  yj

Monge [1781]



Background
Optimal transport

min
T {∑

i

C(xi, T(xi)) : T♯α = β},

This map should minimize some 
transportation cost, which is parameterized 

by a cost function C

Monge [1781]



Background
Optimal transport

Push-forward of measures Pull-back of functions

Kantorovich Relaxation [1942] 

Monge [1781]

Kantorovich 

[1942]

Admissible Couplings



Background
Optimal transport

P ∈ U(a, b) ⇔ PT ∈ U(b, a)

Kantorovich Relaxation is symmetric

Kantorovich’s optimal transport problem now reads

Kantorovich 

[1942]

Monge [1781]



Background
Optimal transport

Kantorovich 

[1942]

Hitchcock

[1941]

Monge [1781]

C

Entropy regularization: An approximation solution

This is a linear program and can not 
be solved in polynomial time
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Cross Atlas Remapping 
via Optimal Transport 
(CAROT) 
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Cross Atlas Remapping 
via Optimal Transport 
(CAROT) 
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• Once we have trained the mapping, we can estimate the 
target Connectome by 


• Sometimes, the large-scale studies release their data in 
multiple atlases (e.g., HCP, UK Biobank, Rest MDD)


• Next, we want to expand the current framework into a more 
dynamic architecture

ν = μT



17

Cross Atlas 
Remapping via 
Optimal Transport 
(CAROT)

2

ATLAS 1

Time Series 

Source 1

time point j

Time Series 

ATLAS 2

Source 2

time point j

Time Series 

ATLAS N

Source N

time point j

Target

edge 1

4

Target Connectoms

time point j

Optimal Transport

Sinkhorn Algorithm
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HCP Project

Shen Atlas Craddock Dosenbach Schaefer Brainnetom Power
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The Human Connectome project is used for training mappings, 
intrinsic analysis, and for some downstream analysis

apply CAROT 
for a given 
target atlas

1

2

 transportation policies(6
2) + 6 = 21

Human 
Connectome 
Project
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Cross-dataset analysis: We used resting-state data 
collected from 100 participants at the Yale School of 

Medicine. 

HCP

Yale 
Participants

1

2

This dataset included 50 females (age=33) and 50 males (age=34.9) with 
eight functional scans (48 minutes total).

A Second Dataset: 
Yale Participants
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CraddockDosenbach Power
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Original
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meta 
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We generalize a sex classification model (using Yale School of 
Medicine and created with the Shen atlas) to the REST-Meta-MDD 
dataset, which only provides preprocessed timeseries data from the 

Dosenbach, Power, and Craddock atlases

Third Dataset: 
Sex classification 
trained on Yale



• You can see that some spots are more intense than others 
indicating higher transformation between regions.


• This emphasizes some of these topological differences between 
atlases.  

• The horizontal line between Schaefer and Shen is belonging to 

areas that are missing in Schaefer

How does a 
mapping 
look like?



What should we 
choose as a cost 
matrix?

• The performance with a single source is quite sensible. But 
we could do better than that.



Intrinsic 
evaluation and 
downstream 
analysis in HCP

• The correlation as a function of  is linearly increasing.

• There are differences among various runs and targets

• Topologically similar atlases reproduced more similar 

connectomes

• We can predict behavior (e.g., fluid intelligence) and can 

identify individuals across different runs

k



Can we generalize these mappings into a different dataset?
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A Second Dataset: 
Yale Participants

• We investigated if CAROT mappings trained in one dataset 
generalize to other datasets.

• We applied the mappings trained on HCP and reconstructed 
connectomes using the Yale dataset using these mappings. 

• Spearman’s rank correlation between the upper triangles of the 
connectomes was used to assess the similarity between the 
reconstructed and original connectomes.
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Can we test a model trained on Shen and try it on a large-scale 
project for which Shen is unavailable?
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Third Dataset: 
Sex classification 
trained on Yale

Review
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Third Dataset: 
Sex classification 
trained on Yale

• In this evaluation, we generalize a sex classification model on Yale date: 
• The REST-Meta-MDD dataset (Yan et al., 2016) only provides 

preprocessed timeseries data from the Dosenbach, Power, and 
Craddock atlases.

• Overall, the sex classification model demonstrated significant classification 
accuracy in the Yale dataset (Accuracy=60.5% ; Naive model 
accuracy=50%;).

• Next, the sex classification model performed significantly better than 
chance in the REST-Meta-MDD dataset when using the reconstructed 
connectomes.
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Generalization of the model on REST-MDD depression dataset
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• Reconstructed connectomes give similar aging results 
as the original connectomes.

• These spatial maps correlate at r = 0.61, suggesting 
that analyses with the reconstructed connectomes 
produce the same neuroscientific insights as analyses 
with the original connectomes.

30

Explanatory 
Analysis: Age 
Differences in 
HCP

Original

Recon
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One limitation,  
Stacking 
CAROT

The number of possibilities to train  in CAROT:T

Equals the number of subsets of a 
set of size n



1. Our GitHub repository contains all 
the code necessary for specifying 
cost matrix, building mappings, and 
recreating functional connectivity for 
a given atlas: https://github.com/
dadashkarimi/carot


2. The online demo supports six 
different atlases and entirely 
operates on a browser via javascript: 
https://www.carotproject.com 

https://github.com/dadashkarimi/carot
https://github.com/dadashkarimi/carot
https://github.com/dadashkarimi/carot
https://www.carotproject.com
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Summary

• In sum, CAROT allows a connectome generated 
based on one atlas to be directly transformed into a 
connectome based on another without needing raw 
data. 

• These reconstructed connectomes are similar to 
and, in downstream analyses, behave like the 
original connectomes created from the raw data. 

• Using CAROT on preprocessed open-source data 
will increase its utility, accelerate the use of big data, 
and help make a generalization and replication 
efforts easier.
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Functional MRI of 30 week fetus
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Decentralized 
Neuroimaging DataNo gold atlas leads different 

functional connectomes across sites

ℝn1×n1 ℝn2×n2 ℝn3×n3 ℝn4×n4

edge 1
edge 1edge 1edge 1

• Since several atlases exist with no gold standards, it is unrealistic 
to have processed, open-source data available from all atlases. 

• Therefore we have this vastly large decentralized collection of 
data. Some of the with privacy concerns that are released in some 
limited set of atlases. Something that has been heavily neglected 
in our community.

These limitations directly inhibit the potential benefits of open-
source neuroimaging data.
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Data Science: key 
Ingredients of artificial 

Key ingredients in data science, 
machine learning, and artificial 

• Key Ingredients of data science: Data, model, 
predictions, decisions, and understanding


• Beyond data, everything else has uncertainty


• A model is the description of data that one 
can observe from a system.


• There are all sorts of models in machine 
learning, but they vary in complexity, 
interpretability, and performance. 


• Depending on the application, one may 
prefer one over another


• High-risk decision-making systems are 
established in a way that is intelligible to no 
experts 


• Eventually, we want to extend our 
understanding

Decisions

Predictions

Model

Data

Understanding
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